Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-Wide Transcriptome Analysis Reveals the Comprehensive Response of Two Susceptible Poplar Sections to Marssonina brunnea Infection.

Identifieur interne : 000E71 ( Main/Exploration ); précédent : 000E70; suivant : 000E72

Genome-Wide Transcriptome Analysis Reveals the Comprehensive Response of Two Susceptible Poplar Sections to Marssonina brunnea Infection.

Auteurs : Yanfeng Zhang [République populaire de Chine] ; Longyan Tian [République populaire de Chine] ; Dong-Hui Yan [République populaire de Chine] ; Wei He [République populaire de Chine]

Source :

RBID : pubmed:29534547

Abstract

Marssonina leaf spot disease of poplar (MLDP), caused by the hemibiotrophic pathogen Marssonina brunnea, frequently results in damage to many poplar species. In nature, two formae speciales of M. brunnea exist that are susceptible to different poplar subgenera. Marssonina brunnea f. sp. monogermtubi infects poplar hosts from Populus sect. Aigeiros (Aig), while M. brunnea f. sp. multigermtubi always infects poplar hosts from Populus sect. Leuce Duby (Leu). Based on the fungal penetration structures, a comprehensive transcriptomic approach was used to investigate the gene expression patterns of these two poplar subgenera at three crucial infection stages. MLDP significantly altered the expression patterns of many genes involved in mitogen activated protein kinase (MAPKs) and calcium signaling, transcription factors, primary and secondary metabolism, and other processes in both poplar subgenera. However, major differences in gene expression were also observed between the two poplar subgenera. Aig was most responsive at the initial infection stage, while Leu largely interacted with M. brunnea at the necrotrophic phase. Furthermore, the differentially expressed genes (DEGs) involved in pathways related to biotic stress also differed substantially between the two poplar subgenera. Further analysis indicated that the genes involved in cell wall metabolism and phenylpropanoid metabolism were differentially expressed in the progression of the disease. By examining the expression patterns of genes related to the defense against disease, we found that several genes annotated with causing hypersensitive cell death were upregulated at the necrotrophic phase of MLDP, inferring that plant immune response potentially happened at this infection stage. The present research elucidated the potential molecular differences between the two susceptible interaction systems in MLDP and provided novel insight into the temporal regulation of genes during the susceptible response. To the best of our knowledge, this study also constitutes the first to reveal the molecular mechanisms of poplar in response to the transition of hemibiotrophic fungal pathogens from the biotrophic phase to the necrotrophic phase.

DOI: 10.3390/genes9030154
PubMed: 29534547
PubMed Central: PMC5867875


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-Wide Transcriptome Analysis Reveals the Comprehensive Response of Two Susceptible Poplar Sections to Marssonina brunnea Infection.</title>
<author>
<name sortKey="Zhang, Yanfeng" sort="Zhang, Yanfeng" uniqKey="Zhang Y" first="Yanfeng" last="Zhang">Yanfeng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Open Laboratory of Forest Protection affiliated to State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China. zhangyanfeng@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Open Laboratory of Forest Protection affiliated to State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China. zhangyanfeng@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tian, Longyan" sort="Tian, Longyan" uniqKey="Tian L" first="Longyan" last="Tian">Longyan Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China. tianlongyan@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yan, Dong Hui" sort="Yan, Dong Hui" uniqKey="Yan D" first="Dong-Hui" last="Yan">Dong-Hui Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Open Laboratory of Forest Protection affiliated to State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China. yandh@caf.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Open Laboratory of Forest Protection affiliated to State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Wei" sort="He, Wei" uniqKey="He W" first="Wei" last="He">Wei He</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China. hewei@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29534547</idno>
<idno type="pmid">29534547</idno>
<idno type="doi">10.3390/genes9030154</idno>
<idno type="pmc">PMC5867875</idno>
<idno type="wicri:Area/Main/Corpus">000F24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F24</idno>
<idno type="wicri:Area/Main/Curation">000F24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F24</idno>
<idno type="wicri:Area/Main/Exploration">000F24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-Wide Transcriptome Analysis Reveals the Comprehensive Response of Two Susceptible Poplar Sections to Marssonina brunnea Infection.</title>
<author>
<name sortKey="Zhang, Yanfeng" sort="Zhang, Yanfeng" uniqKey="Zhang Y" first="Yanfeng" last="Zhang">Yanfeng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Open Laboratory of Forest Protection affiliated to State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China. zhangyanfeng@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Open Laboratory of Forest Protection affiliated to State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China. zhangyanfeng@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tian, Longyan" sort="Tian, Longyan" uniqKey="Tian L" first="Longyan" last="Tian">Longyan Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China. tianlongyan@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yan, Dong Hui" sort="Yan, Dong Hui" uniqKey="Yan D" first="Dong-Hui" last="Yan">Dong-Hui Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Open Laboratory of Forest Protection affiliated to State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China. yandh@caf.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Open Laboratory of Forest Protection affiliated to State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Wei" sort="He, Wei" uniqKey="He W" first="Wei" last="He">Wei He</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China. hewei@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genes</title>
<idno type="ISSN">2073-4425</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Marssonina</i>
leaf spot disease of poplar (MLDP), caused by the hemibiotrophic pathogen
<i>Marssonina brunnea</i>
, frequently results in damage to many poplar species. In nature, two formae speciales of
<i>M. brunnea</i>
exist that are susceptible to different poplar subgenera.
<i>Marssonina brunnea</i>
f. sp.
<i>monogermtubi</i>
infects poplar hosts from
<i>Populus</i>
sect.
<i>Aigeiros</i>
(Aig), while
<i>M. brunnea</i>
f. sp.
<i>multigermtubi</i>
always infects poplar hosts from
<i>Populus</i>
sect.
<i>Leuce Duby</i>
(Leu). Based on the fungal penetration structures, a comprehensive transcriptomic approach was used to investigate the gene expression patterns of these two poplar subgenera at three crucial infection stages. MLDP significantly altered the expression patterns of many genes involved in mitogen activated protein kinase (MAPKs) and calcium signaling, transcription factors, primary and secondary metabolism, and other processes in both poplar subgenera. However, major differences in gene expression were also observed between the two poplar subgenera. Aig was most responsive at the initial infection stage, while Leu largely interacted with
<i>M. brunnea</i>
at the necrotrophic phase. Furthermore, the differentially expressed genes (DEGs) involved in pathways related to biotic stress also differed substantially between the two poplar subgenera. Further analysis indicated that the genes involved in cell wall metabolism and phenylpropanoid metabolism were differentially expressed in the progression of the disease. By examining the expression patterns of genes related to the defense against disease, we found that several genes annotated with causing hypersensitive cell death were upregulated at the necrotrophic phase of MLDP, inferring that plant immune response potentially happened at this infection stage. The present research elucidated the potential molecular differences between the two susceptible interaction systems in MLDP and provided novel insight into the temporal regulation of genes during the susceptible response. To the best of our knowledge, this study also constitutes the first to reveal the molecular mechanisms of poplar in response to the transition of hemibiotrophic fungal pathogens from the biotrophic phase to the necrotrophic phase.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29534547</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2073-4425</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
<Month>Mar</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Genes</Title>
<ISOAbbreviation>Genes (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-Wide Transcriptome Analysis Reveals the Comprehensive Response of Two Susceptible Poplar Sections to Marssonina brunnea Infection.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E154</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/genes9030154</ELocationID>
<Abstract>
<AbstractText>
<i>Marssonina</i>
leaf spot disease of poplar (MLDP), caused by the hemibiotrophic pathogen
<i>Marssonina brunnea</i>
, frequently results in damage to many poplar species. In nature, two formae speciales of
<i>M. brunnea</i>
exist that are susceptible to different poplar subgenera.
<i>Marssonina brunnea</i>
f. sp.
<i>monogermtubi</i>
infects poplar hosts from
<i>Populus</i>
sect.
<i>Aigeiros</i>
(Aig), while
<i>M. brunnea</i>
f. sp.
<i>multigermtubi</i>
always infects poplar hosts from
<i>Populus</i>
sect.
<i>Leuce Duby</i>
(Leu). Based on the fungal penetration structures, a comprehensive transcriptomic approach was used to investigate the gene expression patterns of these two poplar subgenera at three crucial infection stages. MLDP significantly altered the expression patterns of many genes involved in mitogen activated protein kinase (MAPKs) and calcium signaling, transcription factors, primary and secondary metabolism, and other processes in both poplar subgenera. However, major differences in gene expression were also observed between the two poplar subgenera. Aig was most responsive at the initial infection stage, while Leu largely interacted with
<i>M. brunnea</i>
at the necrotrophic phase. Furthermore, the differentially expressed genes (DEGs) involved in pathways related to biotic stress also differed substantially between the two poplar subgenera. Further analysis indicated that the genes involved in cell wall metabolism and phenylpropanoid metabolism were differentially expressed in the progression of the disease. By examining the expression patterns of genes related to the defense against disease, we found that several genes annotated with causing hypersensitive cell death were upregulated at the necrotrophic phase of MLDP, inferring that plant immune response potentially happened at this infection stage. The present research elucidated the potential molecular differences between the two susceptible interaction systems in MLDP and provided novel insight into the temporal regulation of genes during the susceptible response. To the best of our knowledge, this study also constitutes the first to reveal the molecular mechanisms of poplar in response to the transition of hemibiotrophic fungal pathogens from the biotrophic phase to the necrotrophic phase.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yanfeng</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0003-1698-2339</Identifier>
<AffiliationInfo>
<Affiliation>The Key Open Laboratory of Forest Protection affiliated to State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China. zhangyanfeng@bjfu.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China. zhangyanfeng@bjfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Longyan</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China. tianlongyan@bjfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Dong-Hui</ForeName>
<Initials>DH</Initials>
<AffiliationInfo>
<Affiliation>The Key Open Laboratory of Forest Protection affiliated to State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China. yandh@caf.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China. hewei@bjfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Genes (Basel)</MedlineTA>
<NlmUniqueID>101551097</NlmUniqueID>
<ISSNLinking>2073-4425</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Marssonina brunnea</Keyword>
<Keyword MajorTopicYN="N">Marssonina leaf spot fisease of poplar</Keyword>
<Keyword MajorTopicYN="N">differentially expressed genes</Keyword>
<Keyword MajorTopicYN="N">interaction</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
<Keyword MajorTopicYN="N">response</Keyword>
<Keyword MajorTopicYN="N">transcriptome</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>02</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29534547</ArticleId>
<ArticleId IdType="pii">genes9030154</ArticleId>
<ArticleId IdType="doi">10.3390/genes9030154</ArticleId>
<ArticleId IdType="pmc">PMC5867875</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Brief Bioinform. 2013 Nov;14(6):713-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22962337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jul 15;29(14):1830-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23740750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):364-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 May;64(8):2243-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23547108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Sep;44(9):1060-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22885923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 Jun;16(5):529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25220680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2008 Oct;35(10):631-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18937920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 May 07;3:85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2014 Oct 10;19(10):16240-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25310150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Apr;11(4):184-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jul 29;10(7):e0134246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26222429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Apr;146(4):1457-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Jun 29;10(13):751-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10898976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Jan;3(1):2-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20035037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Apr 25;14(4):R36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23618408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Oct;23(10):1303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1996</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23774898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>OMICS. 2012 May;16(5):284-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22455463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Dec;65(22):6629-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25249073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2014 Jul 15;545(1):141-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24780863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Feb 10;5:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24575102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2007 Jul;34(7):641-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17643950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2013 May 1;519(2):238-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23466979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Oct;8(5):541-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Mar;48(3):414-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17251204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microorganisms. 2017 Jan 17;5(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28106722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1674-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Aug 06;6:573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26300892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Nov;6(11):1787-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22057329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Breed. 2010 Jan;25(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20234841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 16;8:1072</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28670324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2003 Feb;34(2):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12613259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2001 Dec 18;2001(113):re22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1871-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2017 Jan 18;17 (1):17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28100172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Mar;7(3):106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11906833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Apr 05;7:191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Mar;25(3):277-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15631976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2008 Oct;3(10):848-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jun;25(6):2356-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23898035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2006 May;1(3):96-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19521489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Nov;152(3):529-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24720378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2013 Jul;19(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24431500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2013 Apr;29(4):233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23153595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S9-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Sep;13(9):613-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22868264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2010 Jul;10(13):2406-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20391531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9892708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jun;29(6):1061-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Sep;10(9):618-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22890146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(15-16):4019-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Jul;22(7):840-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19522566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Nov;11(11):800-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24129511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Jan 1;168(1):51-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Mar;158(3):1342-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e21800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21789182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(11):e973818</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25482778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2001 Feb;91(2):149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2014 Mar 05;3(1):160-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Yanfeng" sort="Zhang, Yanfeng" uniqKey="Zhang Y" first="Yanfeng" last="Zhang">Yanfeng Zhang</name>
</noRegion>
<name sortKey="He, Wei" sort="He, Wei" uniqKey="He W" first="Wei" last="He">Wei He</name>
<name sortKey="Tian, Longyan" sort="Tian, Longyan" uniqKey="Tian L" first="Longyan" last="Tian">Longyan Tian</name>
<name sortKey="Yan, Dong Hui" sort="Yan, Dong Hui" uniqKey="Yan D" first="Dong-Hui" last="Yan">Dong-Hui Yan</name>
<name sortKey="Zhang, Yanfeng" sort="Zhang, Yanfeng" uniqKey="Zhang Y" first="Yanfeng" last="Zhang">Yanfeng Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29534547
   |texte=   Genome-Wide Transcriptome Analysis Reveals the Comprehensive Response of Two Susceptible Poplar Sections to Marssonina brunnea Infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29534547" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020